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ABSTRACT

Restriction and prolongation operators are used to provide a unified frame-

work for the discussion of errors in approximating evolutionary equations. A

generalized truncation error enables the spline-Galerkin method to be studied in

detail and the accuracy of various treatments of non-linear terms (such as the

advection operator v V v )  compared: it is shown how a multi-stage Galerkin pro-

cess can give errors which are O(h2~) for splines of order ~i and quite general

differential operators. A Petrov—Galerkin method is derived for = a3u which

is accurate and stable .
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SIGNIFICANCE AND EXPANATION

Most problems in continuum mechanics (fluid flow, combustion , elasticity)

involve partial differential equations that can be solved only numerically by

~~~~~~~

• . computer. originally most numerical methods for this class of problem used

• finite differences, which involve direct replacement of derivatives by difference

formulae. In the last ten or fifteen years, finite element methods have become

increasingly popular. These involve starting from an assumed functional form for

the unknowns (e.g. piecewise polynomial), then determining parameters in the func-

tional representation via satisfying the partial differential equation in some

approximate sense.

As finite element methods become increasingly used for non-steady problems,

it becomes important that their performance can be compared in detail with that

of the longer established finite difference methods. This paper sets up a frame-

work in which this can be done. Analysis of the spline-Galerkin methods is

carried out and highly accurate schemes put forward for the advection operator

v •V v , which occurs in the equations for practical problems in which motion of

fluid and material particles are involved.
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ANALYSIS OF EVOLUTIONARY ERROR IN FI~lITE

ELEMENT AND OTHER METHODS

• M. J. P. Cullen1 and K. W. Morton 2

1. INTRODUCTION

Any step-by-step procedure for approximating an initial-value problem u~ — Lu or

~~~ = Lu consists of three stages : discretisation of the initial data; updating the dis-

crete approximant to match the evolution of the true solution; and interpretation of the

final result. In this paper , we present a general framework for describing and analysing

Such procedures based on ; the restriction and prolongation operators introduced by Aubin [1]

for studying elliptic problems and used by Noble [20] and others for Fredhoim integral equa-

tions. The first stage of a procedure naturally entails the use of a restriction operator

rh, the second an evolution operator E
h 

and the last a prolongation 
~~ 

Our objective is

a practical one: to provide a framework within which in particular finite element, finite

• difference and spectral methods can be compared in detail and the development of hybrid

• methods encouraged. Detailed comparisons mainly refer to the advection operator v~Vv

Following Swartz and Wendroff [28], Douglas and Dupont 18] and Dupont [10] , the

• standard error analysis of Galerkin methods when Lu is linear , elliptic and negative de-

finite introduces an elliptic projection of the solution Pu and estimates the rate of

evolution of the difference Pu - U, where U is the Galerkin approximation . Much of the

theory for elliptic problems can then be invoked to show that this “evolutionary error” has

the optimal rate of convergence O(hk) in the L2 norm , where h is a space discretisation

parameter and the approximation space or trial space has order of accuracy hk . The

analysis is based on energy estimates and is particularly appropriate when L is self-adjoint.

For then the Ritz projection Pu is in a definite sense the best approximation to u and

~ives a firm basis of comparison for U. But the approach can also be used for more general

elliptic operators (see Douglas , Dupont and Wheeler (9]) and for some non-linear problems

(see, for instance , Wheeler (341 and Dendy [7]).

1
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However, as the departure from self-adjointness is increased , Pu becomes a less

and less good approximation to u or, if a weighted projection is used , the penalty is
5,

paid in an extra qrowth term for Pu - U. Coercivity of L is enouch to obtain optimal

order of accuracy but the constants may be larae. Indeed , at the extreme of first order

• •~ 
• 

hyperbolic equations even this may be lost, as was shown by the example of Dupont (111 - even

though De ndy [6] demonstrated how this could be recovered. Nevertheless, the general approach

• is still valid in all cases : U should be compared with a projection of u into the approxi-

mation space and much information is lost if it is compared directly with u . In integrating

over any reasonable length of time , the evolutionary error is dominant and the most useful

• ¶ schemes will often exhibit phenomena of superconvergence which can best be studied through

such comparisons . Unfortunately the standard analysis precludes this by the presence of a

term P 3 u  - We present an alternative analysis which places more eiçthasis on the dis-

crete procedure: it is quite general both as regard to type of procedure and the projection

used in the comparison and, by means of a generalised truncation error, allows superconver-

gence of the evolutionary error to be easily studied.

A particularly interesting case of superconvergence was exhibited by Thomee [32] and

Thomee and Wendroff [33] . They showed that linear elements used with a Galerkin procedure

on first order linear hyperbolic equations could be interpreted as giving a finite difference

scheme with 0(h 4) accuracy , and more generally splines of order u gave an accuracy of

0(h2~5. We shall show that this is true under any projection and that with orthogonal pro—

tion in L2 the superconvergence continues to hold with non-linear terms like V 
x”~ 

This

view—point draws attention to the possibility of evaluating such a product in a number of

di f ferent  ways — pointwise multiplication, simple Galerkin and two—stage Galerkin — which

have very dif ferent  error characteristics. In numerical experiments on the shallow water

equations, Cullen [3, 4] found that the non-conservative two-stage Galerkin process gave very

much better results than the single stage process : the analysis indicates why this is so.

Similarly, higher order differential operators led to a loss of accuracy in Thomee s

analysis — for instance , only 0(h2) for the heat equation and linear elements: we shall

show that a multistage process can retain the fu l l  O ( h 2
~ ) accuracy for any order , at the

cost of a less compact scheme .
—2—
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The p lan  of the rest  of the paper is as fo l lows . Tn section 2 , res t r ic t ion  and

prolongation operators are introduced and the unif ied framework for analysing evolutionary

error is developed . This is i l l u s t r a t ed  in section 3 on a simple f i n i t e  element problem and

applied in section 4 to the semi-discrete spline Galerkin method. In both sections Fourier

analysis is the main tool for estimating the errors. Section 5 places f in i t e  difference

methods in the same framework , drawing attention to the optimal recovery problem arising at

the final  prolongation . A Petrov-Galerkin method for u~ au is proposed in section 6

which is motivated by reference to characteristics , shown to be stable by an energy analysis

and its accuracy determined by Fourier analysis. Final ly ,  in section 7 , the results as they

pert ain to the advection operator are drawn together , the importance of the restriction oper—

ator in damping short—wave length modes emphasised and the accuracy of an irregular mesh con-

side red.

—3—
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2. UNIFIED ANALYSIS OF EVOLUTIONARY ERROR

• We consider pure initial-Value problems in the form *
5,

- Lu — f on [O ,T] x

( 2 . 1)

u(0,x) — u°(x)

where u is vector-valued (and may be complex in Fourier analysis) and L is a differen-

tial operator in R~ , which may be non-linear but has real coefficients and, like f, does

* • not depend explicitly on t. It is most convenient to work in a separable Hu bert space V

with norm 1 .11 and inner product <., .> and denote by u (t) the mapping u:(0,T] -~ V.

We assume that I. generates a strong evolution operator E(r) :V -~ V , i > 0, so that we

may write

u(t+ i)  — E( r ) u(t) , r > 0 . (2 . 2 )

(See, e.g., Kato [16] for conditions under which this may be established and Tartar (30] for

a brief introduction.)

• Following Auhin [1), we associate the triplet (V
h.ph,rh

) with any procedure for

approximating members of the solution space V on a discrete mesh in Md which is charac-

ten sed by a parameter h > 0. The discrete space Vh , with norm 
“~~“h’ 

consists of ele-

ments u
b which are finite dimensional vectors of parameters defining an approximation to

U; the restriction operator r
h:V -* is a continuous mapping identifying this relation-

ship; and the prolongation operator is an isomorphism from to a closed subspace

Sh of V, called the approximation !pace. In a typical situation , Sh night consist of

continuous piecewise linear functions over a triangulation of R2 
, u.0 the set of nodal

values at the vertices, r
hu those values obtained from a least squares fit to u and

Phrhu the resultant linear approximation . For a given prolongation 
~h ’ we can define

the optimal restriction (in V), denoted by r
h. 

such that

lu  - PhrhUII = inf Hu  - ph”h 11 Vu E V . (2.3)
Vh €Vh

—4—
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It follows that

rhph I~ l hrh~ 
= 1 • ( 2 . 4 )

• 
where is the identity in Vh . In fact we shall always ensure that r

hph 
1h’ so that

Ph rh is a projection , and Phrh is the orthogonal projector : also the usual discrete norm

is given by 1 % 11 h lIP hUh il , and we shall always assume that l l r h ll h is uniformly bound-

ed as h ~ 0. Similarly for a given rh~ ~h is called an optimal prolongation if

rh ~h 
= ‘h and 

~ h
”h ” 

= inf I f v l l  Vv~ € Vh . ( 2 . 5 )

¶ 
fv E v l r h

v—v
h }

Part of the convenience of working in a Hilbert  space is that a uni que 
~h 

exists for each

rh and satisfies a dual property

— 
~hrhu 1l — inf f f u  - Ph

V
h If , ~ u ~ V . (2 .6 )

vh €Vh

A semi-discrete approximation to (2.1) consists of a one parameter family u.0
(t) ,  that

is a mapping ~~~: [O ,T] -
~ 
Vh. satisfying a system of ordinary differential equations

— Lhub = 
~~h ~ € (O ,T] , ( 2 . 7 )

where L.
fl

:Vh 
-
~ 

Vh in some sense approximates L and 
~h approximates f .  We shall normally

• assume that u (0) = r u0 .h h

We shall consider only those fully—discrete approximations which are defined on tine -

levels 0 = t
0 

< t1 ~~~~ < tn <
~~~~

• < tN = T and shall denote hy a superscript n both the

value of u ( t )  at t
n and its approximation u~ , satisfy ing a one-step procedure

n+l (n) nUh = E h ub 
( 2 . 8 )

Here :Vh 
-
~ 
V
h approximates the evolution operator ~(L 1

-t. ) and again we shall

normally take u~ = rhu .  Mult i—step schemes may be included in the formulation as follows:

multiple sets of parameters , which may be identifiable with intermediate time levels, are

included in the specification of V
h ; prolongations 

~h can still refer to a single main

—5—



• • -••.• —,.-• . - • • • -• • •

time—leve l but the definitions of restrictions rh 
must be extended to families

{u( t ) ,  0 < t € T} and the optimality definitions in (2 .3 )  and (2.6) referred to u (t )  € V
S

for each t.

(a) Evolutionary error in the semi—discrete case *

I • We suppose p and r to be time-independent. How they are chosen will depend onh h

the discrete method and the analysis : a Galerkin method usually implies a prolongation and

a difference method may imply a restriction; in either , a prolongation is implied if phuh

is compared to u, and a restriction if U
h 

compared to rh
u. For simplicity of notation,

we shall often denote phub(t )  by U ( t ) , and the parameters in u
h
(t) by U~ (~ ). Then

¶ the projection phrh enables us to split the error as

u - U = (I - Phrh)~ + ph
(r

hu - uh
) . (2.9)

The f irst  term on the right is purely an approximation error in the space Sh and can be

estimated from approximation theory . The second term, called the evolutionary error, is

of greatest interest: we shall use the notation

- 

. e
h 

= r
h
u — uh , e = Pheh 

. (2.10)

We consider first the usual estimation procedure when is generated by a Galerkin

process and L is linear and coercive. Then, interpreting such expressions as Lphub in

a distributional sense , we decompose the difference between (2. 1)  and the prolongation of

(2 .7 )  as

= + + (Lph
_p
hL?l)ub 

+ 

~~~~~~~ 
(2. 11)

The first and last terms on the right are again approximation errors and the decomposition

is aimed at isolating the middle terms. For a Galerkin process, Ph~t
U
h 

is defined with

Lh 
r
hLPh~ ~h 

rh
f so that, for real u, f and I,, we have

~~
ph~~

u
h 

+ 

~~~~~ 
- (Lp

huh 
+ f ) ,  e> = 0 . (2.12)

I f ,  in addition, the restriction is to be defined such that ph rh 
is the elliptic pro-

jection derived from L, we make the further splitting

—6—
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L(u - Phub) = L(u - Ph
r
h~
) + La (2. 13)

and have

(L(u — Ph
r
h
u), e )  = 0 . (2 .14)

¶ Hence from (2. 11) we obtain the energy estimate

~ ~ I l e ll 2 = ( ~~e ,e)  = (I,e,e) + < (p
h
r
h
_I)3

~
u
~
e> (2.15)

giving

~~~l l e f f  + a je ll < lNp h rh -fl
~~~u l f  (2.16)

• if (Le ,e>

This decomposition is heavily oriented towards the Galerkin process and elliptic pro-

jection and the second term in (2.11) will often be difficult to estimate. It also has the

disadvantage that the first term is present throughout and precludes the immediate study of

superconvergence phenomena. We adopt instead a decomposition which places more emphasis on

- -
~~ the discrete operator L

h. Thus we obtain from (2.7) and the restriction of (2.1)

— (L
h
r
h
u_L

h
u
h
) = (r

h
t_L

h
r
h

)u + (r
h
f_f

h
) 

‘ 
(2. 17)

reducing , when L and L
h 

are linear , to

a
~

eh 
- L

h
e
h 

= (r
h

L_L
h rh

)u  + (r
h
f_f

h
) . • (2.18)

The terms on the right in (2.17) and (2.18) we call the truncation error (T.E.). It is the

key term in our analysis and nay be estimated in a variety of ways. In particular , in the

case treated above we have from the Galerkin process

<p h
L
h
r
h
u_Lp

h
r
h
u.e = 0 , = 0 , ( 2 . 1 9 )

• which gives the intermediate result

= < (Ph
r
h
L_Lp

h
r
h

)u + (Ph
r
h
_I)f ,e> . (2 .20)

Then , of course , when we introduce rh so that p
hrh is the elliptic projector , we recover

(2. 15) . But in general we shall prefer to retain (2.18) and concentrate attention on the

-7-
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difference of operator s rh L L h rh : it is more general and more precise and can g ive point-

wise bounds.
S

(b) Evolutionary error in the discrete case

For no:ational simplicity we consider the case where tn+l
_t

n 
= ~t , a constant , and

denote by E the iterated operator E over s time steps. Then with the usual regroup-
h h

• 
• ing of terms we obtain from (2.2) and (2.8)

n n O  n 0 n 0 n Oeh 
= r

h
(E(At)) u — Eh

rhu + (E
h
r
h
u — Eh

U
h
)

• = [r h
E ( A t ) u

O_ l 
— Ehrhun l ] +

+ [E~rh
E(~t)u

n_5_l 
— E 

1
r
h
u°

~~~~
’J +

+ [E
~~~

rh
E(1

~
t)u° — E

~
r
h
u°) + (E

~
r
h
u° - E~u~) . (2.21)

We assume that the approximate procedure is stable: that is, that there exist constants

and K such that

y m A t
• ll E~

vh
_E
~
wh ll h < Ke 

0 
ll V h

_W
h ll h , Yv~ ,w~ € V

h 
. ( 2 . 2 2 )

Then we have

n-l y sAt y t
ll e~ll h < K~~ e ~ (r

h
E(At)_E

h
r
hJu

n s l ll h + Ke ~ n 11 rhu % ll h

4 < Ke °
~~~

{lIr hu
°_ub lI h + tn o:

~~
tn 

~ At 1rhE t ) Ehrh ]u ( t ) lI h~ 
, ( 2 . 2 3 )

in a form similar to that in standard finite difference analysis (see Richtrnyer and Morton

(23]).

In most practical problems in several space dimensions, the error in the time dis-

cretisation is of much less concern than that in tl-’e spatial variables. It is then appro-

priate to estimate errors from (2.18) rather than from (2.23), which is also simpler. Note

that if the time discretisation is unimportant and Euler ’s method is assumed , then

Ehu.n 
= U

h 
+ At [L.n

uh
+f
h
]: formally too, E(At)u -* u + At [Lu4-f] which then relates (2.23) to

—8—
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• (2.18) . For conditions under which this secon:~ limit is valid the reader should consult
S

the references on evolutionary equations already cited . Note , too , that the stability con-

dition on the discrete scheme is replaced by the presence of the term - L
h
e
h 

on the l e f t

of (2.18) .

Use of Fourier analysis

Fourier analysis gives the most precise insight into the local behavior of approxima-

tions and is therefore generally used in comparative assessment of methods on simple model

problems — see , e . g . ,  Swartz and Wendroff [29]. It has long been the most important tool in

• ¶ the study of the stability of difference schemes and , although subsequently rejected b~’

Strang and Fix [27] in their analysis of the finite element method , their Fourier analysis

of the method on a uniform mesh , given in an abreviated form by Strang [26] , is very illu-

minating and forms the basis of the analysis in section 4. The difficulties arise when one

wishes to be both precise and rigorous outside the simple case of linear , constant coeffi-

cient problems on a uniform mesh. However , both in differential equation theory and the

stability theory of d i f f erence schemes , many of the results from Fourier analysis have been

transferred to more general situations and much can be done here too.

In the simple case, and assuming too that the restriction operator is the same for all

components of u , th the transform of r
h is a scalar multiplier and emerges from the

homogeneous error term in (2.18) as a factor . Thus let k denote the d—component t ransform

variable and k .x its inner product with the space variable x: then with ii, L, etc .

denoting transforms , we need to compute e(kh). where

L
h
/L = 1 - c(kh) . ( 2 . 2 4 )

Equation (2 .18) , wi th  taken as r
h
f
~ 

t ransforms to

— £h~h 
= r

h
[e(kh)L(k)u(k)] , (2.25)

and the possibility of superconvergence depends on c(kh). We use the term superconverqence

as in Dupont [12] to refer to any property of u that is matched by the approximant to

—9—
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• higher order than that characterising S
b
. For evolutionary error it means the matching of

rhu by uh and will therefore normally depend on the choice of r
h
: but in this Simple

case it does oot.

As pointed out by Kreiss and Oliger [17] • any discrete procedure needs at least two

• grid points per wave length to give minimal accuracy and in practice c (kh) will only be

reasonably small for kj < i~/2h. It is therefore useful to split the truncation error by

- 

• 

looking for bounds of the form c (kh ) I < C
1 lkh l’~ for khj < s12, I s 0th) I < C2 

for all

kh , so as to obtain for u = (2s) d
fe

1
~~

)(
u(k)dk

* (25)d T.E.j c C h ” 
~~ 

lr h (k)I.Ik
L(k)u(k)Idk + C2 f I h k)L0c)

~
1(k)I dk: (2.26)

J kj<~/2h l k l /2h

c (kh) is responsible for keeping the first term small and the second will depend on the

spectrum u(k) of u and possible damping of inaccurate modes by i
~h
(k). Then an error

bound for II e h II h is obtained immediately from (2.18) and (2.26) with an assumption such

as the semi—boundedness of L.
fl
:Re(eh~

L.
fl
eh
)
h -~~ a I I e h II~

If now L is linear but the coefficients variable or the mesh non—uniform, u can

still be resolved int~ its Fourier components but r
h cannot be taken through l~ and

E(kh) will depend strongly on its choice, now being defined for each node by

(L
h
r
h
e
~
’
~
”
~
)
~ 
/(r

h
Le

ikx )j = 1 — e~~(kh) . (2.27)

Error estimates can still be based on the equation

= (25) df~l(k)E ~(kh) (rh
La~~~

c
)j
dk . (2.28)

We shall see in an example in section 7 how L.~ and r
h 

may still be defined so as to re-

tain superconvergence properties present in the uniform mesh case.

When 1. and L
n 

are non—linear , however , interaction between modes must be calculated

and each case will have to be treated individually . Such studies have been carried out for

various difference methods by a number of authors - see, e.g., Gramxneltvedt (14]. We shall

consider in sections 3 and 4, and again in section 7, the typical case when L(u,v) is a

product uv as in the advection operator v . V u .

— 10—



3. APPLICATION TO A SIMPLE FINITE ELEMENT PROBLEM

5, We take the space V to be L2 ( _ o , =) and consider the linear spline Galerkin method

on a uniform mesh applied to u
~ 

= Lu. An element of V
h 

consists of a set of r odal values

{U~ } at knots x = jh and its prolongation p1 is

U = ~ U .f.(x) , (3.1)
(j )

where summation is over j ~ Z, p .(x) = 4 ( x / h — j )  and •(s) is the piecewise linear shape

function with ~(0) = 1 and ~(9.) = 0 for non—zero 9. € Z. We will use the optimal re—

- • * 1 1 1striction operator r , which makes p r the orthogonal projector into the space spanned

by (ti ); that is, if M is the mass matrix defined by M
mj t)m~4lj

) and ~~~~~ the vector

• defined by u~~ = 

~~~~~~ 
then

1 —1 (~)r u = M  u . (3.2)

In this case , M has components 2h/3 for m = j , h/6 for m—j~ = 1 and zero otherwise.

We will denote by (Q.} the nodal values of r1u.

Now taking the mode u = 13(k)e1~~ , we have

= ~ (k)f e~
k
~~~(x/h_m) dx = h~3(k)e

im
~~(_~) (3.3)

where ~ = kh and is the Fourier transform of $. Hence the Fourier transform of the

projection equations is obtained as

6 m—i~
42m~~in+l~ 

=

i.e., 
~m 

~—l~~(4) *ie~~
’
~ 3~~(—~ ) / ( 2  + cos ~) ~e

im
~~(~ ), say . (3.4)

A simple computation shows that 4 ( e )  = (~~
-
~~) 

2sin
2 

~~~~ and hence

a ( r ,) = 
6(1 — C05 ~~) 

~~ 1 + as 0 . (3 .5)
~ (2 + cos ~)

* . 1 .We will distinguish particular prolongations by superscripts (thus p for linear splines)
and always denote the corresponding optimal restriction with the same superscript.

—1 1— 
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This confirms the second order approximation error of the linear elements for a fixed k,

as a(~ ) is the ratio of the nodal values of p
1
r
1u to those of u.

Next let us consider the evolutionary error when L d
,~
. We have for the nodal values

~~ikxwhen u = u e

(r’Lu)~ — ik(r1u)
3 

ik~e
’3
~ ci(~

) . (3.6)

The discrete Galerkin operator Lh 
equals ni Lpi , or M 11( in terms of the stiffness

matrix K . ( $  ,4. ): under Fourier transformation it becomes M
1K where K = i sin ~~,

• in) in 3

so we have

¶ (Lbr
’u). — (r1Lp’r1u). = M~~K (r

1u); 
h~2
’
+~~~s~~~ ~

e’3~m (~
) . (3.7)

The ratio of the nodal values (3.6) and (3.7) gi~~s then

— i9 (2 + o s  ~) 
~ - as F~ 0 , ( 3 . 8 )

so defining c(kh) in (2.24). Whatever discrete norm 11’ ’1 h 
is chosen , this shows that

• the evolutionary error is 0(h
4) for a given k mode. Moreover, any restriction operator

• could have been used in the error definition r
h
u u

h: c*(~) in (3.4) is just the Fourier

transform of r
1 and would be changed to 

~h
’ but the same factor would appear in (3.6)

and (3.7) and cancel in (3.8).

To obtain precise error bounds for a general u will however depend on the choice of

r
h
. For r1, the ~~2 in a(~) provides some damping for the higher modes. Putting this

with (3.8), which is quite accurate up to ~ ,t/2, we can show for this case (L I 
~~x 

and

1r
h
= r )

2,rIT.E.I < C1h
4 f Ik5~

(k) l dk + C2 ~ n~
2 f lkiI (k)Idk , ( 3 . 9 )

k€I 0 
n=l k€I

where I
n 

= { kl n s  < 2 lk Ih  < (n+l)s} and C1~~ 
0.0090, C2 

4.9
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1

The choice r1 is even more important for a non—linear operator , so let us now con-

sider L(u,v) = — u~~v , with L
h 

again the Galerkin operator . The discrete equations

W = Ln (IJ
~

V) M
1K(U,V) become

h(W . +4W ,+W . ) + (2U .+U . ) ( V .-V . ) + (2U .+U . ) ( V . -V .) = 0 . (3.10)• I j—l j  j+l 
~ 

j—l j  j—l j  j+l 3+1 j

The interaction of Fourier modes is exhibited by putting v = ~e
1k’x to give

1 1 
— ilsin 

~~~ 
sin ~~~

‘ cos ~ cos ~~- 
~~~+~~~‘Y )  

~~~~~ + ‘ )[L.n(r u,r v)]. 
— 

hL2 + cos (~ +~ ‘)] 
uve ~ E a(~ )~~(~~’)  . (3.11)

• ¶ On the other hand

[r
1L(u,v)]. = — i k’ e

1
~~~~~ ~~~~( l ~~ 9 ’)  ( 3 . 1 2 )

and denoting the ratio (3.11) to (3.12) by 
~~~~~~~~~~~~~~~~ 

we have

‘
~G ’~~~ 

‘*~ 1 - (2~
3
~ ,_7~

2
~~ -8~~~ -4~~ )/720 as -~ 0

= 1 — l7&~/720 , when ~~ = ~~~
‘ . (3.13)

Thus the fourth order accuracy is retained through the non-linear interaction under the opti-

mal projection.

Clearly 
~G 

contains a factor s(~ )a~~’)/a(~+~ ’) which will differ for different

choices of r
h in the definition of evolutionary error. In the present case , this factor

behaves like 1 — ~~~~~ and cancels a similar factor in (3.11) to fourth order. If, however,

the restriction operator r’~ corresponding to point collocation were used , 5(r) 1 so

that no cancellation occurs, ~ 1 + ~~~~~
‘ and for this definition the Galerkin procedure

for the product is only second order accurate. This is the interpretation used by Swartz and

We ndroff [29] ,  who therefore advocate simple multiplication of grid-point values for evaluat-

ing a product: under rc that operation is then exact of course. We shall return to this

point again in Section 7.

—13—
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• • . 4. EVOLUTIONARY ERI~DR IN THE SPLINE-GALER)(IN METHOD

In [32] and (33] Thomee and Wendroff analysed the precise behaviour of the semi—discrete

Galerkin method based on B-splines of order ~~, when applied to linear differential opera-

tors on the real line . In [33] they showed the t , for the periodic problem a
~
u — Lu on

• 
. 

• [0,1], an accuracy of 0(h”) was obtained at equally-spaced mesh points when L was of

order in with C coefficients and initial data , where v = 2a-m for in even and

v — 2)i-m+1 for m odd and ii > (m+2)/2 . Their analysis uses a quasi~-interpo1ant so that

• effectively they take the restriction to be collocation at the mesh points while prolongation

• produces an expansion using these coefficients and basis functions which are linear coinbina-

tions of shifted B—splines.

• Working in L
2
, we shall use here the optimal restriction operator and show that the

product operation then has accuracy 0(h2~). Since it is clear from the above that a is

approximated to this accuracy for any restriction , we shall then be able to show that quite

general non—linear differential equations can be approximated to O(h
2
~) by using a success-

ion of spline—Galerkin projections. The analysis closely follows [32] with only minor changes

in notation.

Let )~ be the characteristic function of the interval [ — 4 s f ] .  Then the B—splines

of order P on a uniform mesh with spacing h can be defined as ti~~~ (x) • 4i(x/h-j), where

= ~~ (P factors) and * represents convolution. The Fourier transform of • is

[x ( ~ ) I ~ [(4 ~) 1sin 4 ~~ , ( 4 . 1 )

and Thomee [32] introduces the trigonometric polynomials

g 7(~ ) = (_ i )
a 2 v

h
d l  

~ ~~~~~~~~~~~~~~~~~~~ (4.2)
(m)

• where V = [4 o] and r4 (0+1)] < i , and summation is over is € 5: he proves that

gp ~~~~~~ 
— ~ (t+ 2’im)°[~~(~ +2irm)]2 . (4.3)

(i s)

Zn particular, note that hg~ ~~~ 
is the Fourier transform N of the mass matrix formed

from the $~~~. It is also easily seen that there is a constant K1 such that

—1 4— 
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1 < [~~(~ )) 2Pg 0
(~ ) ~~ 1 + K

1
(~~~/ s)

2
~~ for RI ~ . (4.4)

• .~ From these definitions , the nodal parameters Q. obt ained from projecting a Fourier

component ~~~~~ with ~ = kh are given by

I {~ Q~~ . ( x )  - ~e
mm
~e~~

x } ~ , Ye € Z , ( 4 . 5 )
— 3 j—m 0

from which we see that

• Q . = ~ie
’
~~a(E~) , where a(~ ) = iti (~ )/g1~~0

(~ ) . (4.6)

Hence

[1 + ~~(~/5)2~
i
]~

l 
< [~~(~~)]

P~~(~~) < 1 , for RI < . (4.7)

Also, if L 3 , then writing simply p for the prolongation in this space and r for the

optimal restriction, L
h = rLp with Fourier transform K/M, so that

(L
h
ru)

j (~/M)(u)~ = 
l

( )  e~~
in
~~ f~~~

x x e
~~~

1x
(q)

• 

. 

= ih 
1
[g~ 1

(~ )/g~~0
(~ )] (ru) . . (4.8)

It is easily deduced from (4.3) that 
~~~ = ~~~~ + 0(~ 2u)] as ~ * 0 so that we have

O(h21’) accuracy for the Galerkin approximation to 3

Now let us consider the product operation .

Lemma 4.1. If L(u,v) uv and (L.
n

r) (u ,v) is defined as r[(pru) (prv)], then for

21J
U,  v € H

rL(u,v) — (L
h
r) (u,v) O(h2~) , as h -

~ 0 . (4.9)

Proof

Taking first single components ue1k)C,ve~~ 
x with ~ = kh,n = k ’h ,  the nodal para—

meters F. for L
h
r are given by

— 1 5 —
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F
f ~ R .4i (x)~ (x)dx = f ~ ue

in
~ a(~~) $ (x)~~ ye ~(rI) q (x) c (x)dx . (4.1))

(j ) 3 ~ q Cm) (n) q

If we introduce the factor -9(~ ,n) by putting

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (4 11)

we obtain

hg 0
(~+n)y (~~,n) = f ~ e~~~~~~~~~~ ( x )~~~ e~~~~~(x)40

(x)dx . (4.12)
• (in) (n)

• The triple product can be evaluated by Poisson ’s summation formula

¶ 
~ e’~~~~~ x = ~ 0+2~je

O+25])
~
C
~
’h 

(4.13)

(in)  ( j )

to give

g 0(~
+n)y(

~ ,n) f~ ~
(in) (n)

= ~ 3(~ +2sin ) 3 ( n + 2 w n ) 3 (~ +n + 2 n [ m+n] ) . (4.14)
• (in)  (n)

Clearly y like g is 2s-periodic in its arguments and from (4.1) we see that

• 1 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 1 + K2
((~/iT)2~+ (q/~~~2U

] (4.15)

for kt~ n i  ~~. 
ii and some constant K2. Now (rL) contains the factor a(~+n ). so if we

denote by 1 — c(~ ,r~) the ratio (L.~r) ./(rL) . we have from (4.6), (4.11) and (4.14)

= 1 — a(~ )ci(ri) [(~+n)]~~ g 0
(~+n)y(~ ,n) . (4.16)

From the bounds (4.7) and (4.15) it follows that

Ic (~
,n) I ~ K

3
( (~~/~r )

2
~~+ (0/~ç) 2IJ

]~ for I~ I , I nI < iT . (4.17)

Integrating now over all components of u and v, and noting that both IIL (u,V)fl

and IIL(pru ,prv ) are bounded by h u h  Il v hl , we 

have~



____ 
• 

- • • 
—

• 

• 
rL (u ,v) — L

h
r (u .v) = r[uv — (pru) (prv)]

= fdk ”  r f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (4.1~~

The integral over kI > n/h , k’- k I  > it/h converges to zero as h 0 and ir~side ti is

• range , (4.17) gives the required result with the constant includina a factor l u l l -•
H~~~ 

~ 2

From this bound and the similar one for the operation of differentiation one can st-ate

• the following

Theorem 4.1. Suppose Lu has the form . .L1u, where each L1 consists either of

differentiation or multiplication by u ora C function of x. Let

L
h = ~~~~~~~~~~~~~~~~ where each L~ = rL’p: that is, if L’v 3

x~
’ then L~rv r3 prv and

if L’v S uv or f(x)v then L~ rv C r(pru) (prv) or r(prf)(prv); p and r are prolonga-

tions and restrictions for splines of order p > 2. Then

rLu — L.~~u = 0th
2 

) as h -
~ . ( 4 . 1 9 )

The proof follows immediately from the lemma and the earlier bound for differentiation

after the decomposition

rL - ~~~ = ~~~~~~~~~~~~~~~~~~~ ~L’ +

+ ~~~~ . ~~~~~~~~~~ 
~~~~~~~~~~~~~~ ‘L

’ +

+ ~~~~~~~~~~~~~~~~ . (4.20)

Thus the full order of accuracy is preserved no matter how many derivatives and products are

taken. In particular , for the linear splines p = 2, the usual loss of two orders of

accuracy as one goes from 3 to is avoided by carrying out a projection between the

two derivatives: the resulting scheme is , of course , much less compact than the standard

scheme and the fourth order accuracy in this case will normally be better preserved by

‘half—lumping ’ the mass matrix. In section 7, however , we show how the intermediate pro-

jection is valuable in the advection operation u u.

-17-
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2
One final remark on these methods - the L norm clearly plays an important part in

5, the thinking and 
~~ 

is constructed as a best approximation in that norm. However, when

the final set of nodal parameters u~ is obtained , an optimal prolongation could be sought

with respect to another space. For example , suppose that with linear splines a u~ was

obtained very close to rlu
n. Then the best estimate of any functional of u~ from this

data would depend on the smoothness assumed in u~ . For instance , nodal values might well

‘• be smoothed out: this would be consistent with the observation from (3.5) that

I (r
1
u) . /u. I > 1 for all Fourier modes with 0 < kh ~ it . (Compare the viewpoint in the field

of optimal recovery - see Golumb and Weinberger 113], Meinguet [183, Micchelli ari Rivlin

[19], and references therein.)

—18— 
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5. INTERPRETATION OF STANDA RD DIFFERENCE METHODS

5, In a sense a finite difference scheme is not concerned with prolongation operators and

remains entirely in the discrete space . However , the standard ~ta~ ility theor~ always

supposes some embedding of the approximants into the solution space of the differential pro—

• blem and Raviart [22]  does this in a manner which is directly antecedent to Aubin ’s analysis.

~breover, the choice of the initial data implies the use of a restriction operator and the

interpretation of the final results implies that of a prolonqation operator.

The simplest and most convenient operators from a theoretical viewpoint are those used

by Raviart : the spatial region is sub-divided into rectangular cells C . and r
0u is de-

fined as the vector = ~o . } obtained from averaging u over each cell; the correspondinq

prolongation p°O = ~ 0.0 (x) , where 0 . is the characteristic function of the cell C ..
• (J) J J  :~

Then p0 and r0 are mutually optimal in L
2
: see Temais [31] for developments in other

spaces. This viewpoint is often used in a loose way in direct modelling of conservation laws,

especially in fluid dynamics. However, in constructing such difference schemes these cell

• averages have to be inter—related or related to values at intermediate points and it is then

• that inconsistencies in the approach are often revealed , as compared with Temam ’s rigorous

development.

It is much commoner in practice to regard the numbers in a difference calculation as

representing grid-point values of the unknowns - and this is usually how the initial values

are chosen : that is , the restriction rC is a collocation . It is interesting then to con-

sider what the optimal prolongation ~c should be to recover maximum information at each time

step. From (2.5) P
c must be interpolatory . Also, Aubin ’s results do not apply in L2

because rc is not defined as a continuous operator there : we need to work in an under-

lying Sobolev space H~ where , by Sobolev ’s lemma,  p > d/2 . Because p° has to inter-

polate, the norm in (2.5) under which the infimum is taken could in fact be just the L2

norm of the ~~~ derivatives. The solution to this problem is then well-known in the case

~ f a finite interval of the real line to be qive n by natural spline interpo l at ion (see

de Boor [5], Schoenberg 124)) and more generally will involve generalised splines (see, e.g.

Schultz and Varga [25]).

—19-
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It is not being suggested here that such procedures should be used in practice but

• that these relationships should be borne in mind when , for instance, designing contour-
5,

plotting packages: when processing the output of finite difference procedures one would

expect them to be interpolatory; but , as noted above, when processing that from finite ele-

• • ment schemes we could expect some smoothing of nodal values.

Let us consider now very briefly how three of the most important classes of difference

scheme f i t  into the present framework. The Crank—Nicolson , or more generally the 0—method ,

applied to a
~
u = Lu leads to an evolution operator

• 
¶ ~~~~ Eh 

u~ [I
h
_
~
t0
~~

] 1[Ih
+
~
t(l_0)L

h]u~ 
(5.1)

where L
~n 

is a central difference approximation to L and some mild restriction on Lt

may be needed to solve for ~~~~ when L.0 
is non—linear.

Then

• (I
h
_AteL.~](~t)

l [r
c
E(~ t)_Eh

r
c
)un

= (~t)
_l
([Ih

_
~tO~~]r

cu l_ [I
h+A

t(l_O)~~~1r
c
u
n) (5.2)

is the usual expression for the truncation error in a finite difference analysis. Similarly

a Lax—Wendroff scheme may use two difference approximations ~~l) ~~2) together with an

averaging operator A to give

C I + ~~~~~~~~~~~~ [A + 4 ~tL~
1
~~] ,~ (5.3)

and more general Runge-Kutta schemes may be expressed in the same way , all giving a defini-

tion of truncation error identical with the usual one.

Mult i—level  schemes, like the leap-frog , require a l i t t l e  more care . We def ine  Vh
to represent discrete approximati’v~s at two time levels 4 ~t apart , with r

h 
defined by

the procedure used to obtain approximations at t=0, t= ~~
. 

~~t from the initial data. The

two meshes may or may not be staggered and we may cover the generalised case in which the

two time levels are updated differently by using two difference operators ~~2)

Denoting by ~~~~~ u~
23 the components of u.~ at the two levels , we have

-20—
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~ l) 0 \

\ 

(C l)  \ç~ (‘( AtL~
2
~~~ (u~

h ) \~

5, \~~~~t(~~
l)  ~~~2y 

L~u(2)) \.
\

0 ~~C 2
)/  

~
2y (5.4)

(I~~~ ~~~~~~~

E
h 
u
h 

~~~tL~~~ I~~
2)

+ (A t)
2
L 

3
L 

\
u~

2)
,,
) . (5.5)

If  L is linear and — p
2 

is an eigenvalue of L~~~ L~
2>
, then the e igenvalues  of

eig. E
h 

= i ± ip~~t~~l — (4 p~~t) 2] — 4 p 2 (~ t) 2 
, (5.6)

the upper sign giving the approximating modes and the lower the familiar spurious modes ,

when all variables are held at each level. The error (t~t) [r hu nt4 i_ E
hrh u n

l is then best

studied by resolving rhu into the two sets of modes : for example , when u is scalar and

~~l) 
= ~~2) 

one gets

• u~
23 

: 
(1) 

= ± [1 — (4 p A t ) 2j + 4 ipAt ; (5.7)

that is, the true mode represents u~
23 half a time—step ahead of ~~~ and the spurious

(1) (2)
mode having u

h and u
1 almost equal and opposite in sign . As is well known, such a

linearised analysis carried out for Lu = — u a u  shows the spurious mode to be not Only

• travelling in the wrong direction but to be amplified when the true mode is damped and thus

capable of generating a non—linear instability .

Each of these schE .s may be ‘hybridised” by using, for instance , Galerkin methods to

generate Lh. The wave equation , treated as a system by leap—frog, is a useful example.

Unstaggered linear elements under the Galerkin procedure give , of course , the asymptotic

error (l/l80)~~~ of (3.8): if the two meshes are staqqered this is reduced by a factor

— 13/32 but at a cost of reduced stability.
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6. A PETROV-GALERXIH METHOD FOR u = al u

If u is qi ven ,  the G a le r k i n  approximation to Lu is optimal in the L2 sense so

that , i n a semi—discrete method or an explici t  difference method in time as ~~~t ~~ 0, the

• Galerkin equations qive an optimal approximation to the time derivative or difference of u.

But for an implicit difference method one has to approximate the solution to equations like

• . u~
+l_0AtLun4i = gt-

~. If L is not seif-adjoint it is likely that the Galerkin equations

will give a poor approximation to u~~
1. Thus experiments for similar equilibrium problems

• are being conducted to find appropriate test functions for a Petrov-Galerkin approach — see

[2) and [15] and references therein.

Suppose test functions are used to give an approximation to ?
~
u = Lu by

— 0A~ LU~~
1 

— (U n+(l_0)A~ LUn ) ,X~) = 0 . (6.1)

Then the operator (I — 0AtL) in the inner product defines a new restriction operator S
h

for obtaining (tJ~~~}. The evolution operator in (2.8) is given by

= 
~~~~~ 

+ (l_O)AtL] p
h 

(6.2)

while the rh 
occuring in the truncation error of (2.23) will normally be different. Even

for the explicit case 8 = 0, it may be useful to use the Petrov-Galerkin method.

We consider here the case when Euler ’s method is to be used on U aa u with lineart x

elements on a uniform mesh and p1, r1 defined as in section 3. Now it is well—known that

Galerkin ’s method gives a scheme which is unstable unless At = 0(Ax )2. On the other hand ,

when a is constant the characteristics can be followed exactly and there need be no

evolutionary error. So we consider whether there is a choice of ,~~
. which will achieve

this result.

Lemma 6.1. Sgppose the basis f u nction s 
~~~

. are such that we can ~et

a • . ( x) = it . (x) — 11 (x)  , 4’. (x) •.(x) — • it (x )  (6.3)
X 3 j l  3 1 3

and 1t .(x) it (x/h—j) for some n (x). Then the Euler—Petrov—Galerkin method will follow

the characteristics of a u = aa u for aAt = h iff .t x — —
( , t);~~) 0 Y i , j . ( 6 . 4 )

—22—
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Then if ~
n 

= ~0.4. , we need ~
n+l 

= for aAt h. Thus the following

should be an iden ti ty in Q .  or , equivalently, in Q.~~ 
— Q .

— 
~~~~~~~~~~~~~~~~~ ‘ x j~ 

= 0 1.1 i

The coefficient of (Q.~ 1—Q .) is just ~. (x) from (6.3) so the result follows immediately.

For linear basic functions , = ( 4~ — 4~?) /h , whe re is the characterist ic
~ X J  j l  j 3

• function of the interval [jh,(ji-l)h) , so that 
~~~

. = c~~—4~~. Moreover , t~~ . is itself the

difference of two triangular—shaped functions , = 
~ i— l

5
~ 

whe re s
3

(x) = x/h—j in

[jh ,(j+l)h] and s .(x) = 0 otherwise. Thus we need <~~~~~. , s .) to be constant, indepen-

dent of j. Clearly if X
m 

is to be of the form X (x) = )l(x/h-m) with X of compact

support , we need

m+1
tX (t)dt = 0 , V m . (6.5)

• 

. 
We choose

• . X (t) = 4—6t , for t € [0,1]; X (t) = 0, otherwise . (6 .6)

Then fxdt = 1 and for constant a > 0 we take test functions which are a linear combina—

• tion of X . and P~ . We must first establish stability.

Theorem 6.1. The Petrov-Galerkin scheise given by

( V n
~~~ ((Jn + aAta Un) , (l—u)4~ + uX .) = 0 , V i , (6.7)

is stable for constant a on a uniform mesh if

0 < Mt/h < v < 1 . (6 .8)

Proof

We shall  need the following results  which can be easily computed .

Lemma 6 .2 .  For the basic funct ions ~~~ we have :

(X.,4? ) = ( X , >  (~~~ ?,~~~?)  = ha .. = ~~(X1~~
X . )  . (6.9)

Denote by 
~~~

. the test functions in (6.7), defining a restriction operator Then

we form first V = p ls~ (aa Un ) ,  multiply equation (6.7) by the coefficient (U~~
1+u?+AtV .)

• and sum over i to n~ t

—23—



<~~
n+l_ (U

n+aAta U
n), ~ . ( U ~~~~~~ u? +Atv )~~. = 0 . (6 .10)

x ( i)  1 1 1 i

Let us denote by U the vector of nodal values (U.) and by p
0
U, p~U, o

AU its pro-

logations using basis functions (4 ? ) ,  {~~~~~
) ,  { x . )  respectively: we also retain ~~~~~ ~~ta-

• tion U for p
1U. Then (6.10) can be written as

• 
• 

<U
n
~~~ (U

n+~A~~~U
n), [(l_u)p 1+up

X
)(~~~~+ U°+ AtV)> = 0 (6.11)

and , from the lemma, the cross products between U° and are symmetric and the re fo re

cancel to give a difference of squares. Furthermore , from the construction of V it fo1low~

• that for any vector W,

(V—aa U°, pew > = 0 (6.12)

So (6.11) reduces to

[(1—u) I~~
n+l11 2 + VIIP~~ II I — [(i—u) 11~~~1

2+ VIIp~~~I I ]

= At(aa
~
U°
~ 

[(l-u)p1+up~](2U
’
~+AtV)) (6.13)

• To simplify the right-hand side, note that (ax
Un. PU

n) = 0 and that

hIh3~U
m+p~~ h i 2 = h F ~ 3 v~ _ 1-~~÷x~~h2 

= II~~~~II
2

expanding the sum gives therefore

2 ( a u’~, ~,X~n > — h I } a u n h I 2 
. (6.14)

For the final term, we have from (6.12)

• (aa U~, p~V) = (p
1
~, p~V) = (1—u) !bp 1

~ I I 2+ uIIp°v1l
2

while from the Cauchy—Schwarz inequality

2(aa U
n , P~!

) < (1—u) IIp
1
!11

2+ vIlp xvII
2+ lIaa~

u°II 2

so that together we have

(aa Un , p~V).c llaa%u
n h1 2 . (6 .15)

Putting (6.14) with (6.15) gives for the right—hand side of (6.13),
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I(aAt)
2 

— uhaAt) II a ~u
n II 2

so that stability follows for vh > aAt

Next, we can consider accuracy and have the following:

Theorem 6.2. The Petrov—Galerkin scheme given by (6.7) is second order accurate if

v = aAt/h = constant < 1

Proof

We can use Fourier analysis, putting u = ue1loE. Then writing p = Mt/h and with

• m (~ ) given by (3.5),
¶ 

(r1E(At)u) . = ~~~ (~~)
1~~ (J ~~~~ (6.16)

The mass matrix for (6.7) has transform M = h[4 (1—v)(2+cos ~) + u ] ,  and we have

(E
hr

1u). =

where B(~ ) = 1 + aAt~~~
1
[(l—u)i sin ~ + v(e’~ —l)] . (6.17)

The essential factor in the truncation error is therefore given by

(A t) l[e’~~-0(~)) ~ (At) 1
[4 p (v-p)~~

2+ ~ ip (u-p
2)~

3+ . . .] (6 . 18)

as ~~-*O

The scheme is thus first order for v > g, second order for p = v < 1 and exact for

= v 1.

• It may be noted that this scheme with v = p closely resembles the Lax— Wendroff

method for this equation (or any other S~ method) . In fact, the terms in if in  ( 6 . 7 )

are exactly the same and it 15 Only the presence of the mass mat r ix  which disti n g u i s h  the

schemes: it has the effect of marginally improving the accuracy , for the coefficient of

• i~
3 in (6.18) is u2(l—p)/6 , while for Laic—Wendroff it is ii (l—p 2)/3
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7. APPROXIMATION OF THE ADVECT1ON OPERATOR

In the foregoing sections , we have identified three easily implemented approximations

to u~~u, all based on the Galerkin method with linear elements but distinguished by the

way in which the product is formed. The definition of the methods is contained in the ex—

pression for the truncation errors, in a semi—discrete process and with restriction rh~ 
as

follows: the single—stage Galerkin method (SSG) gives

• . rh
(ua u) — r3 [(p

1
rh
u)(8 p

1
rh
u)) (7.1)

• 

• 

the double-stage Galerkin method (DSG) gives

1 1 1 1  1
r
h
(ua u) — r [(p r

hu)(p r a~P rhu) ; (7.2)

and point multiplication Galerkin (PNG) gives

1 1
rh(u8 u) — (rh

u)(r a p r
h
u) . (7.3)

The natural choice for r
h 

in the first two cases is r1, while rc is probably most

• natural for the third. For the purpose of comparison thea, we tabulate for each case under

-
• both choices the leading term in c(~ ,~ ) for a single mode as introduced for (4.16). The

entry for PMG under rc follows immediately

Restriction r rc

17 4 1 2
SSG ~~~~~~~~~~~

DSG 1~~~4 1~~~2

p 1 2 1 4
MG 

6~~ i80~~

Table Leading terms in c(~~,~~) for the three methods

SSG, DSG, PMG under the restrictions r1 and r0.

from ( 3 . 8 )  because point multiplication is exact under rC and there is no interference

c ~. c c 1 .
between the processes because r (ua x

u) Cr u) (r a xti) . The DSG entry under r is new
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and is also the smallest: comparing with (3.13), it results from a y(~ ,~~’) which behaves

like 1 + (2~~~ ’ + 3~
2~ ,2 2ZE’

3
—4~ ’4)/72O.

• For smooth functions and under the restriction r1, we would expect therefore that

DSG would be up to nearly six times better than SSG. This will depend on the spread of

modes in u since the total truncation error at node; is of the form

T.E. = fdke~
kJh c*(kh) fd€~~(k-€) ~1 (4k+4Ic)~i (4k—4K) c (0+t5, 0~.t$) , (7.4)

where we have put E~+~~’ = 20 = kh and ~—~l’ = 26 = Kh. Thus we compare

0-6) ~ (l7O~—36 0
36+1002 2~ 406~+ 56~)/720 (7.5)

and 
~~~G~

0
~
6’ 0—6) % — (38~+l6e~6 — 300

2
*5
2+16063_56

4)/720 : (7.6)

2
for a normally distributed spectrum, ti (k)~X e~~~ , these expressions would be multiplied

2by e before being integrated over ~c(or 6), so that the leading terms in (7.5)

and (7.6) would be dominant.

- • By contrast, under these conditions PMG would be quite uncompetitive. On the other

hand , considering the error r u u
h 

under the restriction rc in this case, we need to

compare (7.5) and (7~6) with

0—6) ~ 4(0
4
-40

36+602tS2—406
2+64)/720 , (7.7)

which shows it to be quite comparable to DSG. The choice between these methods must there-

fore come down to a choice of restriction. With rc, the factor cz(kh) in (7.4) is miss-

ing and this becomes significant when contributions from kh+2nw for all n are combined

in the coefficient to e’~°~. Thus suppose we write in each case

E(k) = maxi ti . fdK I~~(k-K) i~ (4k + 4 I c ) li (4k_4K)I . (7.8)

Then the coefficient of e
hl

~
C in  the truncation error is bounded by

• 

~~

.
• E

(n) 
s(kh+2nTt)E(k+2nit/h) : (7.9)
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for PMG under rC this is an undamped sum over the E values; but for DSG (or SSG) under

ci(~ ) is rapidly damped for 
~~~ 

> i t ,  being reduced by a factor nine by ~ = 3it/2

and behaving asymptotically like ç
2 Such modes beyond the resolution of the grid are

• • 
• continuously created by the product operation and result in the phenomenon of aiiasing : a

sharply damped a is essential for their su ppression. For the spline-Galerkin methods of

section 4, a(~) “
~ and for spectral methods (Orszag (2 11) a(~ ) = 1 for RI < it and

= 0 for RI > n.

One further factor, besides the behaviour of errors for small ~ and the suppression

¶ 
of aliased modes for large 1 , needs to be considered in comparing methods. That is the

growth rate of errors as expressed by the second term on the left of (2.17) or the stability

• • bound in (2.22). For SSG one will have the same energy conservation properties as for the

differential problem and the error growth can also be analysed in a similar way : for example,

in the model problem a~
u + uau 0, one has for two semi—discrete approximations U and

V on the whole real line

~~I I u —v II 2 = — 
~ 
8~ J

2
—~~~~

2 
, IJ—V ) = (U

2
—V
2 

, a (U—v) )

= 4 ( U + v , a
~

(u_v) 2 ) = — 4( a
~

(U+v) , (u_v) 2 ) . (7.10)

Thus the deviation grows only when the mean solution is “compressive”. On the other hand ,

in obtaining the greater accuracy with DSG one has sacrificed energy conservation and this

result on error growth. For energy conservation one has now, where A ,6 are the forward

and central difference operators,

+ U(p
1r
1a U) ,U) = 0

• i.e., ~~~4II U II
2 = ((1—p 1r’)aU, U

2) , (7.11)

“ (l/72)Z (~~ (A ~U~
:. 2(62A~u~) : (7.12)

• thus energy grows in a typical compressive wave—front at a rate which is 0(h
4). Similarly

instead of (7.10) one has
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2 + ~(a (U+V), (U-V)

2
> = 2 (U(l_p l

r
l)~~ U_V (1_p 1

r
l
)a V , U-v)

~ (l/36)~~~~ 1 (A~U .) (8
2
A~U .)-(A ~V~) (~~ A V .)1( (U .-V .) (7.13)

which is much less useful. However , in numerical comparisons with the shallow water eaua-

tions on a two dimensional triangular qrid , Cullen 13 ,4) has found DSG to be siqnificartiv

more accurate th~..i SSG and both much better than PMG : he also noted that the two simpler

Galerkin processes in DSG could be inmplemented more efficiently than the one process in

SSG.

¶ 
Finally, let us briefly consider the effect of an irregular mesh . With linear ele-

ments, the Galerkin method gives for 
~ 

= r
1
a p

1
IJ the equations

V . + V .)h, + (!V .+ ~~. V . ‘h . = (U . - U . I , (7.14)
6 j—l 3 3 j— 3 j 6 j+1 -i+ 2 j+l j—l

where h , and h .÷ are the intervals to the left and right of the ~th node. Now

suppose that a co—ordinate transformation were made so as to give a regular mesh in a new

• co-ordinate y and denote dx/dy by g(y). Then if g(y) is piecewise constant , p1

denotes the same prolongation in both x- and y— space and the same vector V is gen-

erated from

(4 , gp
1V> (4t~ , ayp1u ) . (7.15)

That is, if we define r
y 

to be the restriction carried out in y—space with the weight

function g(y) in a least squares procedure , V = r (g~~3p
1
U) . Now we can carry out a

Fourier analysis in y—space and with u = ~~~~~ consider the truncation error

r~ (~~
’(Y)ay

)u - (r
y 9

1
(Y)a),P

1)rhu . (7.16)

This is probably simplest when r
h is chosen to be r :  then the ratio of the nodal values

is sin ~(M
1
a)., where ~ = kh and h is the y—mesh interval ; the tridiagonal matrix

M and vector a are given by

1 —i1 2 1 i~M = C ... ,~~~ g e  ,~~ -, 
g 

g. e • .  . .) (7.17)
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~•I I a. (2 - (g.~ e~~+ g. e~~) + i~(g . ÷ - g )1/2(l - cos ~) , (7.18)

where g . ,  g.÷ 
are the values of g to the left and right of the ~th node. This is a

direct generalisation of the regular mesh case and shows more readily how the order of
4

accuracy is lost than an analysis on the x-mesh. As ¶Fhom~e and Wendroff [331 suggest , one

can of course recover the full fourth order accuracy by choosing a smooth transformation

1 .
g(y) and replacing both r

y 
and rh 

by r in y—space : the method is now changed from

• (7.14) and the evolutionary error is defined by a projection in v—space, i.e. one has

actually changed co—ordinate systems and no longer has an irregular grid.

r
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